Tver, Tver, Russian Federation
Tver', Russian Federation
Saint Petersburg, St. Petersburg, Russian Federation
VAK Russia 5.2.3
The modern digitalization of public administration increases the need for tools for accurate budget forecasting. Despite the accumulated research in the field of interbudgetary relations, the problem of identifying the quantitative relationship between the socio-economic indicators of regions and the distribution of federal transfers, especially with the use of artificial intelligence methods, remains insufficiently studied. The lack of studies using neural networks to forecast financial assistance to the constituent entities of the Federation and the high demand for improving the efficiency of budget planning were the key reasons for choosing this topic. The objective of the study is to identify the relationship between the indicators of regional socio-economic development and the volume of interbudget transfers, as well as to build a model for forecasting future transfers using the backpropagation method. The objectives include forming a data sample, constructing the structure of the neural network, its training, and testing. The methodological basis is a fully connected multilayer perceptron with two hidden layers of 34 neurons, trained on normalized data using the backpropagation method. The sample includes 16 annual socio-economic indicators and quarterly data on transfers for 85 regions of the Russian Federation for 2015-2021, ensuring high model representativeness. The sample timeframe is limited to 2022, as data for the subsequent period are characterized by changing external conditions, which affects their comparability with the previous time series. The results demonstrate a steady reduction in error in the test sample and confirm the existence of a statistically significant relationship between socio-economic parameters and transfer volumes. The model successfully predicts the amount of transfers for the next quarter. The practical significance of the model lies in its applicability to decision support in planning federal financial assistance and developing a «model budget.» Limitations include the absence of qualitative factors and political and administrative parameters in the sample. Future research could aim to include a wider range of indicators and compare neural networks with alternative machine learning methods.
Artificial intelligence, neural networks, neural network training, backpropagation, intergovernmental transfers, socioeconomic development
1. O nacional'nyh celyah razvitiya Rossiyskoy Federacii na period do 2030 goda i na perspektivu do 2036 goda [Elektronnyy resurs]: Ukaz Prezidenta Rossiyskoy Federacii ot 7 maya 2024 g. № 309 // SPS «Konsul'tantPlyus». Rossiya / ZAO «Konsul'tantPlyus». M., 2022.
2. Baranov, A.M. Algoritm segmentacii nauchnyh statey, sochetayuschiy principy obucheniya s uchitelem i bez uchitelya / A.M. Baranov // Novye informacionnye tehnologii v avtomatizirovannyh sistemah. -2019. -№22.- S. 162-168 EDN: https://elibrary.ru/MLLHUS
3. Valitova, L.A. Mezhbyudzhetnye transferty i ekonomicheskie stimuly regional'nyh vlastey /L.A. Valitova // ENSR. -2005. -№2.- S.19 EDN: https://elibrary.ru/IEZYLR
4. Vasenkov, D.V. Metody obucheniya iskusstvennyh neyronnyh setey / D.V. Vasenkov // KIO.- 2007. -№1.- S. 20-30 EDN: https://elibrary.ru/KVMOUR
5. Vasil'eva, T. N. Metody iskusstvennogo intellekta / T.N. Mamonova // MNIZh.- 2015. -№4-1 (35).- S.1-3
6. Vereschaka, E. K. Rol' mezhbyudzhetnyh transfertov v formirovanii regional'nyh byudzhetov / E. K. Vereschaka // Forsayt «Rossiya»: novoe industrial'noe obschestvo. Perezagruzka : Sbornik dokladov Sankt-Peterburgskogo mezhdunarodnogo ekonomicheskogo kongressa (SPEK-2017), Sankt-Peterburg, 01 yanvarya – 31 2017 goda / Pod obschey redakciey S.D. Bodrunova. Tom 3. – Sankt-Peterburg: Institut novogo industrial'nogo razvitiya im. S.Yu. Vitte», 2018. – S. 382-387. – EDN XNMXUL.
7. Vinogradova E.K. Stanovlenie sistemy mezhbyudzhetnyh transfertov: istoriya i sovremennoe sostoyanie / E. K. Vinogradova, G. L. Tolkachenko, N. E. Careva, // Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Ekonomika i upravlenie. – 2021. – № 1(53). – S. 41-49. – DOIhttps://doi.org/10.26456/2219-1453/2021.1.041-049. – EDN VMEDSI.
8. Vinogradova E.K. Vliyanie subfederal'nyh transfertov na social'no-ekonomicheskoe razvitie regionov / E. K. Vinogradova, G. L. Tolkachenko, // Faktory razvitiya ekonomiki Rossii : sbornik trudov Mezhdunarodnoy nauchno-prakticheskoy konferencii, Tver', 22–26 marta 2021 goda. – Tver': Tverskoy gosudarstvennyy universitet, 2021. – S. 81-88. – EDN BVIQLX.
9. Vinogradova E.K. Primenenie metodologicheskogo instrumentariya k provedeniyu analiza vliyaniya mezhbyudzhetnyh transfertov na social'no-ekonomicheskoe razvitie sub'ekta / E. K. Vinogradova, G. L. Tolkachenko, N. N. Bedenko, // Ustoychivoe razvitie social'no-ekonomicheskoy sistemy Rossiyskoy Federacii : sbornik trudov XXIII Vserossiyskoy nauchno-prakticheskoy konferencii, Simferopol', 18–19 noyabrya 2021 goda. – Simferopol': Obschestvo s ogranichennoy otvetstvennost'yu «Izdatel'stvo Tipografiya «Arial», 2021. – S. 53-59. – EDN UIGVJC.
10. Voznyuk, P.A. Istoriya razvitiya i sovremennoe sostoyanie iskusstvennogo intellekta/ P.A. Voznyuk // Globus: tehnicheskie nauki.- 2019.- №3 (27).- S. 11 – 18
11. Glyzin, S.D., Periodicheskie rezhimy gruppovogo dominirovaniya v polnosvyaznyh neyronnyh setyah / S.D. Glyzin // Izvestiya vuzov. -PND.- 2021. -№5.- S. 775 – 797 DOI: https://doi.org/10.18500/0869-6632-2021-29-5-775-798; EDN: https://elibrary.ru/OUOIJM
12. Ivanov, V.M. Intellektual'nye sistemy: uchebnoe posobie / V. M. Ivanov // Ekaterinburg: Izd-vo Ural.un-ta, - 2015. – 92 s. EDN: https://elibrary.ru/UWKVCT
13. Iskusstvennyy intellekt / Ministerstvo cifrovogo razvitiya, svyazi i kommunikaciy Rossiyskoy Federacii// [sayt].- URL: https://digital.gov.ru/ru/activity/directions/1046/ (data obrascheniya: 10.08.2022)
14. Ispolnenie federal'nogo byudzheta i byudzhetov sub'ektov Rossiyskoy Federacii (predvaritel'nye itogi).-Moskva. –URL: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.minfin.ru/common/upload/library/2021/03/main/Ispolnenie_2020_god.pdf (data obrascheniya: 01.12.2025)
15. Kirton, Dzh.Dzh. Povestka dnya «Gruppy dvadcati» v oblasti cifrovizacii / Dzh.Dzh. Kirton // Vestnik mezhdunarodnyh organizaciy: obrazovanie, nauka, novaya ekonomika.- 2018.- №2.- S. 17 - 44 EDN: https://elibrary.ru/YXBNVB
16. Mohnatkina, L. B. Transferty kak instrument obespecheniya regional'noy ekonomicheskoy bezopasnosti/ L. B. Mohnatkina// VESTNIK Orenburgskogo gosudarstvennogo universiteta. – 2015. - №1 (176). S. 93 -100. EDN: https://elibrary.ru/TWQYAX
17. Otchet Stenfordskogo centra Institute for Human-Centered AI // [sayt].- URL: https://hai.stanford.edu/research/ai-index-2022 (data obrascheniya: 01.12.2025)
18. Petrenko, K.K. Iskusstvennyy intellekt kak reshenie prognosticheskih problem na zheleznodorozhnom transporte na primere kompanii OAO «RZhD» /K.K. Petrenko// NAU.- 2017. -№1- (27-28).- S. 41-43 EDN: https://elibrary.ru/XYGKSX
19. Pitts V., Logicheskoe ischislenie idey, otnosyaschihsya k nervnoy aktivnosti / V. Pitts, U.S. Makklarok // URL.: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.raai.org/library/books/mcculloch/mcculloch.pdf (data obrascheniya: 01.12.2025)
20. Simonov, V.V. Ocenka effektivnosti parallel'nyh algoritmov dlya modelirovaniya mnogosloynogo perseptrona / V.V. Simonov// Doklady TUSUR. -2010. -№1-2 (21).- S. 166-171 EDN: https://elibrary.ru/LMEEPN
21. Federal'noe kaznacheystvo : oficial'nyy sayt. – Moskva, 2022. – https://krasnoyarsk.roskazna.gov.ru/ (data obrascheniya 01.12.2025)
22. Federal'naya sluzhba gosudarstvennoy statistiki : oficial'nyy sayt. – Moskva, 2022. – https://rosstat.gov.ru/statistic/ (data obrascheniya 01.12.2025)
23. Shumkov, E.A. Skorostnoy metod obucheniya mnogosloynogo perseptrona / E.A. Shumakov// Nauchnyy zhurnal KubGAU.- 2011. -№65. – S. 1-9
24. Hodgkin A. L., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiol. 1952. Vol. 117, no. 4. P. 500–544.DOI:https://doi.org/10.1113/jphysiol.1952.sp004764
25. Somers D., Kopell N. Rapid synchronization through fast threshold modulation // Biol. Cybern. 1993. Vol. 68, no. 5. P. 393–407. DOI:https://doi.org/10.1007/BF00198772 EDN: https://elibrary.ru/SWVVUZ
This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International




