Digital Transformation of the Continuing Professional Education System as a Tool for Enhancing Human Capital Efficiency
Abstract and keywords
Abstract (English):
In the context of economic digital transformation, the effective development of human capital becomes a strategic priority for structural modernization. One of the key mechanisms for updating professional competencies and increasing labor productivity is the system of continuing professional education (CPE). This article explores the theoretical and economic foundations of CPE as a tool for the flexible adaptation of the workforce to changes in the technological paradigm. Particular attention is paid to the issue of insufficient personalization of learning trajectories, which leads to dropout and reduces the return on investment in education. As a solution, the study considers the use of digital footprints and Predictive Student Guidance Technologies (PSGT) for the dynamic adjustment of individual learning paths. Drawing on global practices and theoretical insights, the article proposes a conceptual model of a digital CPE ecosystem aimed at enhancing the efficiency of human capital development. The research takes an interdisciplinary approach, integrating economic theory and digital educational technologies.

Keywords:
human capital; continuing professional education; digital transformation; predictive models; individual learning trajectories; digital footprint; return on investment in education; digital economy
Text
Text (PDF): Read Download
References

1. Avdeeva, D. A. (2024). Vklad chelovecheskogo kapitala v rost rossiyskoy ekonomiki // Ekonomicheskiy zhurnal VShE. T. 28, № 1. S. 9–43. DOI:https://doi.org/10.17323/1813-8691-2024-28-1-9-43. EDN: https://elibrary.ru/DVKDJY

2. Verhorubova, P. A., Edrenkina, M. V., Popova, E. I. (2021). Proektirovanie cifrovogo sleda realizacii individual'nyh obrazovatel'nyh traektoriy // Vestnik Shadrinskogo gosudarstvennogo pedagogicheskogo universiteta. № 4(52). S. 46–55. DOI:https://doi.org/10.52772/25420291_2021_4_46. URL: https://vestnikshspu.ru/journal/article/view/830 (data obrascheniya: 17.10.2025). EDN: https://elibrary.ru/ZPAILO

3. Voevodina, E. I., Naumov, D. V. (2024). Podhody k postroeniyu konceptual'noy modeli cifrovogo universiteta v usloviyah cifrovoy transformacii obrazovaniya // Ekonomika i upravlenie: problemy, resheniya. T. 21, № 12(153). S. 118–124. DOI:https://doi.org/10.36871/ek.up.p.r.2024.12.21.016. EDN: https://elibrary.ru/JNZCZA

4. Kvasha, V. A., Kolesov, R. V., Voevodina, E. I. (2025). Vnedrenie individual'nyh obrazovatel'nyh traektoriy v obrazovatel'nye programmy universiteta i ih vliyanie na udovletvorennost' studentov uchebnoy deyatel'nost'yu // Perspektivy nauki i obrazovaniya. № 5(77). S. 69–85. DOI:https://doi.org/10.32744/pse.2025.5.5. EDN: https://elibrary.ru/JMUUMK

5. Arnold, K. E., & Pistilli, M. D. (2012). Course Signals at Purdue: Using Learning Analytics to Increase Student Success // Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (LAK’12). New York: ACM. P. 267–270. URL: https://er.educause.edu/articles/2012/7/signals-using-academic-analytics-to-promote-student-success (data obrascheniya: 26.10.2025).

6. Arnold, K. E., & Pistilli, M. D. (2012). Signals: Using Academic Analytics to Promote Student Success // EDUCAUSE Review. 17 July 2012. URL: https://er.educause.edu/articles/2012/7/signals-using-academic-analytics-to-promote-student-success (data obrascheniya: 26.10.2025).

7. Chen, F., Milln, P., Suddaby, G., & Higgins, A. (2020). Utilizing Student Time Series Behaviour in Learning Analytics: A Case Study // Journal of Learning Analytics. Vol. 7, No. 2. P. 1–17. URL: https://learning-analytics.info/index.php/JLA/article/view/6777 (data obrascheniya: 16.10.2025).

8. Chung, J. Y., & Lee, S. (2019). Dropout Early Warning Systems for High School Students Using Machine Learning // Computers & Education: Artificial Intelligence. Vol. 96. P. 346–353. URL: https://ideas.repec.org/a/eee/cysrev/v96y2019icp346-353.html (data obrascheniya: 26.10.2025).

9. D2L Corporation. (2025). Boost Corporate Learning with Predictive Analytics // D2L Blog. 29.10.2025. URL: https://www.d2l.com/blog/boost-corporate-learning-predictive-analytics/ (data obrascheniya: 26.10.2025).

10. Khachaturyan, A. A. (2021). Human Capital in the Digital Economy // Resources and Environmental Economics. Vol. 4, No. 1. P. 314–324. DOI:https://doi.org/10.25082/REE.2022.01.002. EDN: https://elibrary.ru/WHGILU

11. Lauricella Coolberth, N. (2025). 8 Reasons Why Skills Training is Key to Economic Prosperity: The Empirical Case for Investments in Workforce Development [Elektronnyy resurs]. Washington, DC: National Skills Coalition. URL: https://nationalskillscoalition.org/wp-content/uploads/2025/05/NSC_EmpiricalCaseforSkills_May2025.pdf (data obrascheniya: 27.10.2025).

12. Lee, S., & Chung, J. Y. (2019). The Machine Learning-Based Dropout Early Warning System for Improving the Performance of a University // Applied Sciences. Vol. 9, No. 15. Art. 3093. URL: https://www.mdpi.com/2076-3417/9/15/3093 (data obrascheniya: 16.10.2025).

13. López-Zambrano, J., Lara, J. A., & Romero, C. (2021). Early Prediction of Students’ Performance Using Digital Traces in Virtual Learning Environments // Psicothema. Vol. 33, No. 1. P. 74–81. URL: https://www.psicothema.com/pdf/4692.pdf (data obrascheniya: 26.10.2025).

14. National Skills Coalition. (2023). New Report: 92% of Jobs Require Digital Skills, One-Third of Workers Have Low or No Digital Skills Due to Historic Underinvestment, Structural Inequities [Elektronnyy resurs]. URL: https://nationalskillscoalition.org/news/press-releases/new-report-92-of-jobs-require-digital-skills-one-third-of-workers-have-low-or-no-digital-skills-due-to-historic-underinvestment-structural-inequities/ (data obrascheniya: 20.10.2025).

15. Naveed, A. (2025). Using Predictive Analytics to Reduce Dropout Rates in Online Courses [Elektronnyy resurs] // Edly Blog. URL: https://edly.io/blog/predictive-analytics-to-reduce-dropouts-in-online-courses/ (data obrascheniya: 27.10.2025).

16. Onopriienko, K., Petrushenko, Y., Duranowski, W., & Artyukhov, A. (2021). Development of Regions, Industries and Types of Economic Activity // Bulletin of the Cherkasy National University. Economic Sciences. Issue 1. P. 49–56. DOI:https://doi.org/10.31651/2076-5843-2021-1-49-56. URL: https://scispace.com/pdf/digitalization-of-adult-education-in-the-context-of-human-3jth1til2h.pdf (data obrascheniya: 21.10.2025).

17. Ortigosa, A., Carro, R. M., & Quiroga, J. I. (2019). From Lab to Production: Lessons Learnt and Real-Life Challenges of an Early Student-Dropout Prevention System // Proceedings of the Tenth International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2019). URL: https://udimundus.udima.es/bitstream/handle/20.500.12226/220/From-Lab-to-Production-Lessons-Learnt-and-Real-Life-Challenges-of-an-Early-Student-Dropout-Prevention-System.pdf (data obrascheniya: 26.10.2025).

18. Russia: Productivity, relative to the U.S. [Elektronnyy resurs] // TheGlobalEconomy.com. URL: https://www.theglobaleconomy.com/Russia/productivity_relative_to_US/ (data obrascheniya: 27.10.2025).

19. Shamsutdinova, T. M. (2020). Cognitive Model of Electronic Learning Trajectories Based on Digital Footprint // Open Education. Vol. 24, No. 2. P. 47–54. DOI:https://doi.org/10.21686/1818-4243-2020-2-47-54. EDN: https://elibrary.ru/PWCSEE

20. Sulumov, S. K. (2023). Transformation of the Vocational Training System in the Conditions of Digitalization of the Labor Market // SHS Web of Conferences. Vol. 172. Art. 01031. DOI:https://doi.org/10.1051/shsconf/202317201031. EDN: https://elibrary.ru/LEFBLM

21. Timofeeva, E. G., & Dorofeeva, A. A. (2022). Digital Transformation of the Russian Historical Education: Regional Aspect // Galactica Media: Journal of Media Studies. Vol. 4, No. 4. P. 284–294. DOI:https://doi.org/10.46539/gmd.v4i4.350. URL: https://galacticamedia.com/index.php/gmd/article/view/350 (data obrascheniya: 06.10.2025).

22. Veshkurova, A., Kopylova, N., Aleksashina, T., & Alyamkina, E. (2022). The Role of Human Capital in Ensuring the Digital Transformation of Russian Companies // Proceedings of the IX International Scientific and Practical Conference “Current Problems of Social and Labour Relations” (ISPC-CPSLR 2021). P. 405–410. DOI:https://doi.org/10.2991/assehr.k.220208.071.


Login or Create
* Forgot password?